CanmetENERGY: Activities on Ground Source Heat Pumps and recent advancements.

Parham Eslami Nejad Research Scientist 2018 OGA conference

CanmetENERGY

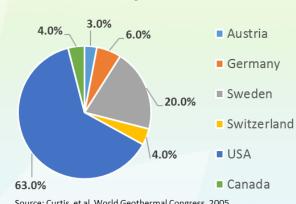
Leadership in ecoInnovation

Presentation outline

- GSHP status
- Barriers
- Activities at CanmetENERGY
- Recent advancements
- Perspectives

 $\hbox{$\textcircled{\odot}$ Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2017}$

Ground Source Heat Pumps

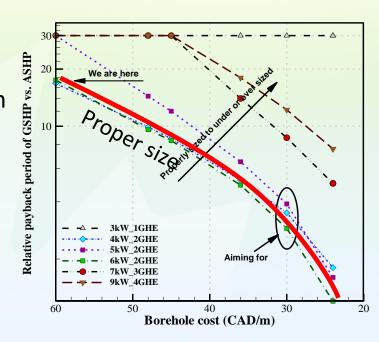

Shallow Geothermal Landscape

Shallow geothermal landscape (D. Tangauy, 1st Canadian German conference 2014)

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2017

Global GSHP Installed Capacity **6 Largest Countries**

Source: Curtis, et al. World Geothermal Congress, 2005

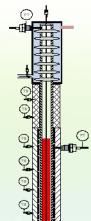

- Approximately 95% of heat pumps used in the Austrian housing market are ground-source.
- Switzerland is estimated to have the highest installed density in world, with an average of more than one unit per 2 km²

Market and Technical Barriers

- High initial cost
- Use of synthetic refrigerants
- Lack of knowledge and good tools for design

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2017

CO₂ SL-GSHP



CO₂ DX-GSHP

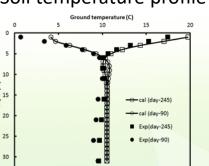
Borehole with PCM

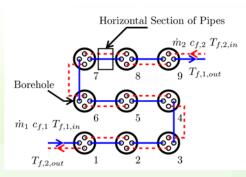
Ground Source Thermosiphon

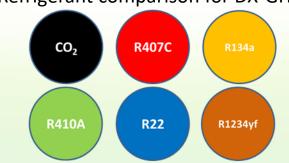
Showcase CO₂ DX-GSHP

2008 2012 2014 2016 2018

CO₂ DX-GSHP Combined Heating, Cooling & DHW


coming soon

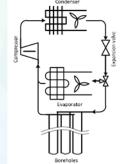


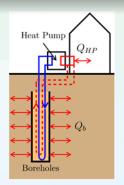

Soil temperature profile

New SL-GHE model

Refrigerant comparison for DX-GHE


2011 2013 2016 2017



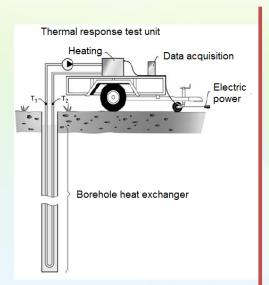


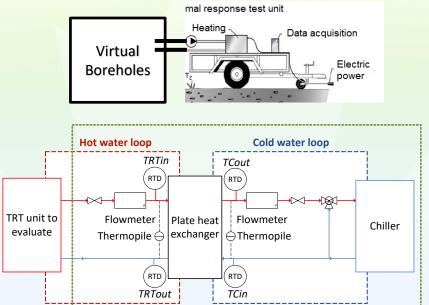
Grout permeability

Hybrid DX-GSHP

Self-assisted SL-GSHP

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2017




Leadership in ecoInnovation

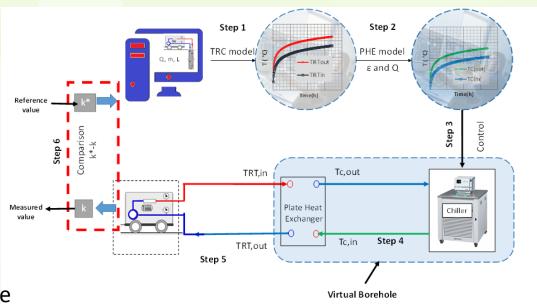
Thermal Response Test (TRT) unit

TRT

A test setup to calibrate TRT units.

Thermal conductivity is the most important data required for a precise ground loop design.

Virtual Borehole



Virtual borehole

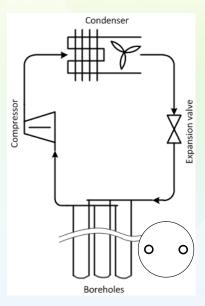
How it works?

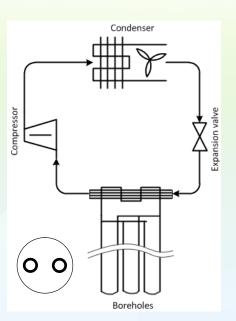
- Hypothetical borehole dimensions and characteristics
- Heat injection rate
- Thermal conductivity value for which the TRT is calibrated
- Heat exchanger's performance curve
- Validated RC model for borehole



Test sample!

The concept is able to reproduce the soil thermal conductivity with the uncertainty of 0.5%.


Leadership in ecoInnovation


GSHP types

 DX GSHPs provide noticeably greater energy performance

 DX GSHPs are more complicated to design and to control

Direct Expansion

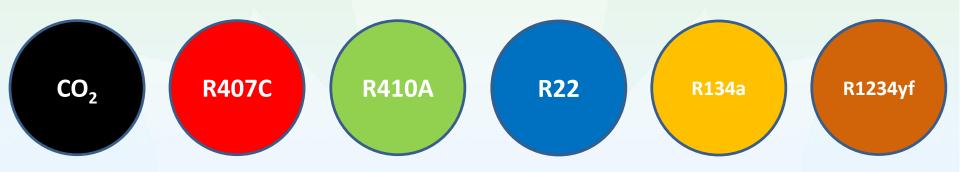
Secondary Loop

Carbon Dioxide (CO₂) as refrigerant

- Non toxic, Non flammable, Non corrosive
- ODP=0
- GWP=1
- Large carbon footprint reductions

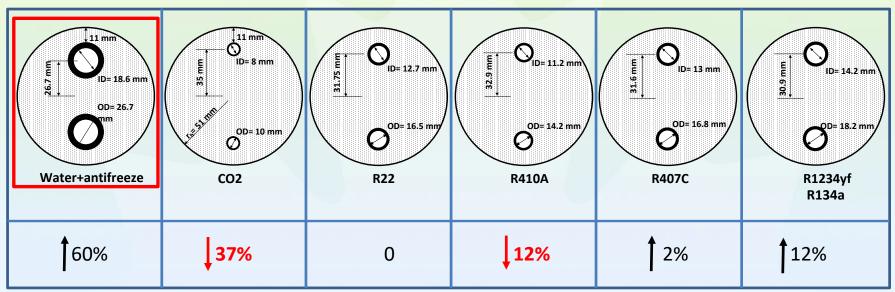
- Low critical temperature
- Good heat transfer characteristics
- Less energy required for circulation
- Higher cooling capacity
 - Higher energy density

- Less expensive
- No Phase-out
 Potential and
 unaffected by future
 legislation
- Smaller heat pump components



Refrigerant comparison

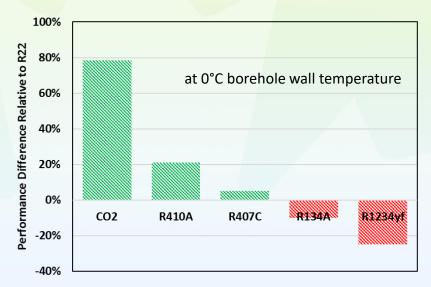
Comparing numerically the performance of the direct expansion ground heat exchangers as evaporator under using 6 different refrigerants



Pipe size reduction!

Pipe sizes under equal pressure drop!

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2017



Performance improvement

Heat extraction rate per pipe surface area per temperature difference and per

required mass flow rate.

Perspectives

- CO₂ is a promising candidate (environmental, technical and financial benefits) for the replacement of synthetic refrigerants!
- Innovative borehole configurations using CO₂ is leading to significant reduction in borehole costs by up to 50%!
- Promising COP is anticipated for integrated CO₂ DX-GSHP solutions!
- New standard for TRT can improve the accuracy of units!

Thank you!

parham.eslaminejad@canada.ca

© Her Majesty the Queen in Right of Canada, as represented by the Minister of Natural Resources, 2017

